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Continuum approach to diffusion-limited-aggregation type of growth
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Models of kinetic growth phenomena analogous to diffusion-limited aggregation are introduced.
The presence of two coupled fields enables the removal of nonlocality in the growth equations.
Simple modifications of the model lead to a range of patterns similar to those observed in recent

electrochemical deposition experiments.
PACS number(s): 64.60.Qb, 81.15.Pq

Growing structures such as diffusion-limited aggrega-
tion (DLA), viscous fingering, solidification, dielectric
breakdown, and electrodeposition may all be understood
in terms of a common framework involving the solution
of Laplace’s equation with suitable boundary conditions
[1-10]. The growth process in DLA is nonlocal and in-
volves the screening of the interior of the cluster lead-
ing to tenuous fractal structures. The conventional ap-
proaches for the simulation of such processes has involved
variants of one of the following: (i) discrete DLA growth
models where a particle walks randomly until it touches
the cluster and then gets attached, (ii) a direct numeri-
cal solution of Laplace’s equation (a steady state limit of
the diffusion equation) with appropriate boundary con-
ditions on the growing interface—the growth is taken to
be proportional to the gradient of the Laplacian field
at the interface (in the simplest version). The second
method allows one to treat the problem in the continuum
limit and to model nonlocal fractal growth dynamics [11].
It has two technical disadvantages—first the solution of
Laplace’s equation is time-consuming, being a nonlocal
problem, and second, the growing interface needs to be
identified and kept track of accurately, since the bound-
ary condition is specified at this interface.

In this paper, we introduce simple stochastic differen-
tial equations for the study of a large class of problems
including DLA. The nonlocality is removed by the in-
troduction of two coupled fields, f and g, f describing
the presence (f > 0) or absence (f < 0) of the aggre-
gate and g describing the field causing the growth. Fur-
ther, the need for continuous identification of the inter-
face is avoided—no boundary conditions are imposed at
the interface (f = 0). In the Laplacian growth limit (the
cluster growth rate is small) our numerical results are in
quantitative accord with previous work [2]. Another class
of behavior is obtained for large cluster growth rates—the
diffusion equation can then no longer be approximated by
Laplace’s equation. Patterns distinct from the DLA ones
and similar to those obtained by Kahanda et al. in elec-
trochemical deposition [9] are produced on modifying the
aggregation mechanism to allow for growth proportional
to the magnitude of g at the interface rather than its
gradient.

Our model is described by the equations
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where the coefficients —} and % in (3) set the equilibrium
values of f to be +1. The interaction term I > 0 leads
to a growth of f and a decay of g such that the quantity
(f + ag) does not change with time, except for sources
of the g field at the boundary. Two choices of I [12] that
we have used are

I, = -V f.-DVgn(r,t)], (4)
I = g|V f|*D2[n(r, )] (5)

7n(r,t) is a Gaussian noise uncorrelated in space and time
with mean value V > 0 and width W. For a planar
geometry, periodic boundary conditions in the transverse
direction are utilized for both the f and g fields. In the z
direction, normal to the initially planar interface located
at z = 0, f satisfies antiperiodic boundary conditions. g
was held fixed at go at the boundary where f < 0 (z =
z,). Alternately, in most of our runs, we varied the value
of g at the boundary to maintain a constant lux —DVyg.
Initially, the g field was chosen to be g(z) = goz/zy,
whereas the f field was chosen to be the steady state
solution of (1) with the I term being absent. We also
studied the case of a circular geometry with analogous
boundary and initial conditions except that all the runs
had a fixed g at the circular boundary.

Equations (1) and (2) without the I term have a simple
interpretation. Equation (1) is the standard model B dy-
namics [13] that conserves the total magnetization. The
choice of a negative coefficient of f2 in the expression for
the free energy (3) corresponds to a temperature lower
than T.—there are two values of f that minimize the free
energy; with suitable choice of the scales of z and f, these
may be fixed at the values +1 or —1. The coefficient a
in (3) is a measure of the surface tension. Equation (2)
in the absence of the I term is the diffusion equation.
The interface is simply defined by the f = 0 contour.
Note that interfaces of arbitrary topologies (overhangs,
handles) are allowed which is an advantage over stan-
dard approaches which focus on obtaining an evolution
equation for a surface in the Monge representation.
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The I term in (1) and (2) represents the aggregation
rate of g particles in the f = +1 phase. I; in (4) arises
from the following considerations: —DVg is the flux of
g particles while V f is a vector normal to the constant
f surfaces (V f is substantially different from zero only
near the interface). The same I term with opposite sign
in (2) takes into account the removal of the g field at
the aggregate. In both (4) and (5), V is the average
aggregation rate whereas W is a measure of the fluctua-
tions in the growth rate. From the central limit theorem,
W ~ |Vg|~'/% in (4) although our simulations show that
the large scale properties of the aggregate are unaffected
by the specific value of W. The I; term in (5) provides
a growth mechanism proportional to the value of g itself.
Unlike the I; case, the value of g is nonzero at the inter-
face and allows for a flux of g with a nonzero component
in a direction parallel to the interface.

Our approach is a variant of methods previously pro-
posed in two different contexts: the phase field model
[14] introduces two coupled differential equations for de-
scribing solidification, one for the temperature and the
other for the phase field—no distinction is made between
the solid and the liquid phases during the numerical in-
tegration [15]. In a context somewhat more similar to
the present work, several workers [16] have studied cou-
pled differential equations to monitor the dynamics of
growth processes. In all aggregation models, the sum
of the diffusive and aggregating fields (f and g) is con-
served. While the phase field model incorporates a sur-
face tension naturally, the interaction mechanism is such
that both solidification and melting at the solid-fluid in-
terface are permitted. In our model, the g-f conversion
is unidirectional—the f field grows at the expense of the
g field. Further, the interaction mechanism is decoupled
from the surface diffusion—the choice of conserved order
parameter dynamics for the deterministic part of Eq. (1)
is a natural physics requirement, since the aggregate par-
ticles can only be redistributed locally via surface diffu-
sion. Further, a conservation law is operative even far
from the interface. The nonconserved coupling part is
responsible for the growth of the interface.

Our approach is to define two fields, one of the dif-
fusing particles and the other characterizing the growing
aggregate. The basic idea is that due to the interaction
of the two fields, the diffusing particles join the growing
aggregate at its surface leading to the conversion of one
field into the other. In the phase field method, the solid
phase itself is characterized by nonconserved dynamics—
i.e., the analog of our f field does not have a conservation
law.

We have carried out detailed numerical studies of the
model in two dimensions in both planar and circular ge-
ometries. The coefficient o in (1) has been set equal
to 1 in our simulations. Equations (1)—(5) were solved
on a discrete square grid with lattice constant equal to
1, and the integration time step equal to 0.01. Control
runs were performed with half the time step to ensure
that the results were statistically the same. For com-
putational ease, the interaction term was assumed to be
operational only when |f| < 0.8—the remnants of the g
field (< 2%) were converted to f in the region f > 0.8.
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FIG. 1. Sequence of interfaces (defined as f = 0) for growth
starting from the small square located at the center of the
sample using the I; interaction mechanism. The noise width
W is set to zero, g is held fixed temporally in an inhomoge-
neous manner on the square boundary of the figure, so that
initially V2g = 0 with g(r = 75) = 0.5 and g(r = 5) = 0, the

surface tension term a = ;.

Note that the g = 0 condition behind the interface is
dynamically implemented in our models. A simple inter-
polation procedure allows for the determination of the
interface, f = 0, with a resolution an order of magnitude
smaller than the lattice spacing.

Our principal results are summarized in Figs. 1-6. Fig-
ure 1 shows a typical pattern in the absence of noise in a
circular geometry with the I; mechanism. This is clearly
reminiscent of conventional Laplacian growth [17]. The
initial square symmetry that is maintained in the present
calculation is destroyed on adding an infinitesimal noise
term. Note, however, that the splitting mechanism is
operational even in the absence of noise. The finger-
ing instability is seen clearly in Fig. 2(a). We have con-
firmed that the instability manifests itself in the expo-
nential growth of the unstable modes with the growth
rate approximately depending on the wave vector in the
form suggested by Mullins and Sekerka [18]. Figure 2(b)
shows a late stage of growth of a system in the planar
geometry. Successive splittings of the fingers in order to
maintain a characteristic finger width, screening of the
lower branches by the higher ones, and the development
of an intricate treelike pattern are discernible in the fig-
ure.

The basic length scale in Egs. (1) and (2) is set by the
surface tension in the form of \/a. Indeed, by defining
suitable length and time units, one can rescale (1) and (2)
and obtain a renormalized value of a = 1. We have veri-
fied that the characteristic finger width in the simulations
is proportional to y/a and also depends on the boundary
flux rate. We find that the finger width decreases on in-
creasing this flux approximately as the (flux)~1/2—our
measured exponent is 0.45+0.05 (the flux rate of g is a
measure of the inverse time allowed for the diffusional
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FIG. 2. (a) Initial stages of growth starting from a plane
interface with the I; mechanism. a = 3; W/V = 1. The flux
of the g field at the boundary was held constant during the
simulation. (b) Late stages of growth of the system similar to
that shown in (a).

relaxation of f near the interface) [19]. Unlike the lat-
tice simulation of DLA processes, in our model, the in-
terplay between the growth rate and the surface tension
determines the basic finger width. Nevertheless, in the
regime we have studied the fractal dimension seems to
be unchanged from that obtained in lattice simulations
of DLA. It is interesting to note that in solidification
processes the scaling of the growth velocity as a function
of the undercooling is different depending on the nature
of the cutoff length scale [20]. In this context, our con-
tinuum model may be somewhat analogous to a discrete
lattice diffusion transition model [21]. A key difference,
however, is that the undercooling is global in the liquid
state, whereas our growth processes involve diffusion of
the aggregating particles from the boundary.

Figure 3 shows a typical pattern obtained in the cir-
cular geometry. A power law mass-radius relationship is
found corresponding to a fractal dimension of 1.65+0.05,
in good agreement with that expected for a DLA cluster
[2]. Figure 4 shows a pattern obtained by modifying the
boundary condition to allow for a higher value of g at the
boundary. The Laplacian approximation for the diffusion
equation is less valid in this case. Strikingly, the pattern
obtained is qualitatively different from Fig. 3 with more
filling. It has not been possible to deduce the fractal di-
mension in this case, because of a long crossover regime.
At short length scales, the effective fractal dimension is
higher, but a clean power law is not obtained.

In a recent Letter, Kahanda et al. [9] explored the pat-
terns obtained in the electrochemical deposition of cop-
per at very slow rates so that local growth effects com-
peted with the nonlocal Laplacian effects. Two distinct
patterns were observed at high and low current densities.
The former is a prototype of Laplacian growth phenom-
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FIG. 3. Circular geometry growth with I; interaction
mechanism. At ¢t = 0 g(r = 125) = } and g(r = 3) = 0,
a= %, W)V = %. The boundary condition is as in Fig. 1.

ena and is quite similar to the patterns in Figs. 1-3. On
the other hand, the latter is characterized by a colum-
nar morphology, no sidebranching, and narrow crevices
between the columns. The physical reason for this is
that at low current densities the deposition rate is slowed
down by a potential barrier of water molecules inhibit-
ing the activation of cations in the double layer [9]. The
growth rate then would be expected to be proportional
to the density of the g field at the interface instead of
the flux—a mechanism captured in I,—[Eq. (5)]. Figure
5 shows that the fingering pattern obtained in this case
bears a striking resemblance to that obtained in Ref. [9]
and is qualitatively different from Fig. 2(a). The g field
is no longer zero at the interface and is higher where the
growth rate is larger. This in turn leads to a diffusion
of g parallel to the interface causing the voids between
the columns to fill in. This effect may be accentuated by
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FIG. 4. Same as Fig. 3, except g(r = 125) = 1.
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FIG. 5. Initial stages of growth starting from a plane in-
terface with the I> mechanism. a = 3; W/V = 1. The flux
of the g field at the boundary was held constant during the
simulation.

repelling the g field from the interface (as in the experi-
ment) thus slowing the growth rate and thence allowing
diffusion to smooth the g field along the interface. We
have confirmed this in simulations by replacing (2) with

Q%I;’t—) =V - (DVg+ AgV f) — I1(r,t). (6)
Here, the diffusive flux has been augmented by a biased
flux due to the repulsive force acting normal to the inter-
face and in the vicinity of the interface. The neighboring
fingers merge leaving holes behind (Fig. 6) and this is
strikingly similar to the low current growth pattern in
Ref. [9].
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FIG. 6. Same as Fig. 5 but with an additional force re-
pelling the diffusing particles from the growing aggregate
[Eq. (6)]. The three panels show the effect of increasing the
force magnitude (the force is highest for the bottom panel).
The vertical coordinates of the middle and top panels have
been shifted by 100 and 200 units, respectively.
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